Deutsch | English | Español | Français | Italiano | Português | Русский | العربية | 日本語 | 简体中文 | 繁體中文 | 한국의 | Türk | Polski
LOGO
Global B2B Portal for Bio-Medical & Pharm Industry
Product / Service Supplier Catalogs & Literature    
Search
or
home Product News Catalogs Web TV News & Topics Featured Articles Trade Shows Sourcing Help My allbiomedical
News & Topics Content
allbiomedical > News & Topics >Researchers engineer functioning small intestine in laboratory experiments

Researchers engineer functioning small intestine in laboratory experiments
Author: Bioscience Technology Staff
Source From: Bioscience Technology
Posted Date: 2011-07-06

Researchers at The Saban Research Institute of Children's Hospital Los Angeles have successfully created a tissue-engineered small intestine in mice that replicates the intestinal structures of natural intestine—a necessary first step toward someday applying this regenerative medicine technique to humans.

The study led by Tracy C. Grikscheit, MD —"A Multicellular Approach Forms a Significant Amount of Tissue-Engineered Small Intestine in the Mouse"— has been published in the July issue of Tissue Engineering Part A, a premier biomedical journal.

"In this paper, we are able to report that we can grow tissue-engineered intestine in a mouse model, which opens the doors of basic biology to understand how to grow this tissue better," said Dr. Grikscheit, who is also an assistant professor of surgery at the Keck School of Medicine of the University of Southern California.

As a pediatric surgeon, Dr. Grikscheit is concerned with finding solutions for some of her more vulnerable patients—newborns. Infants born prematurely are at increased risk for a gastrointestinal disease called necrotizing enterocolitis (NEC), which occurs when the intestine is injured. The cause is unknown.

Early treatment of NEC is essential to stop the potentially life-threatening leakage of bacteria into the abdomen. Often, the only solution is surgical removal of the small intestine. However, this option leaves the baby dependent on intravenous feeding and at risk for liver damage from subsequent intravenous nutrition. Organ transplants are possible but not a long-term solution, with only a 50 percent chance the grafted intestine will last past the child's 5th birthday.

Dr. Grikscheit, a member of The Saban Research Institute's Developmental Biology and Regenerative Medicine program, envisions a better solution. "The small intestine is an exquisitely regenerative organ. The cells are constantly being lost and replaced over the course of our entire lives," she explained. "Why not harness that regenerative capacity to benefit these children?"

Working in the laboratory, the research team took samples of intestinal tissue from mice. This tissue was comprised of the layers of the various cells that make up the intestine — including muscle cells and the cells that line the inside, known as epithelial cells. The investigators then transplanted that mixture of cells within the abdomen on biodegradable polymers or "scaffolding."

What the team wanted to happen did — new, engineered small intestines grew and had all of the cell types found in native intestine. Because the transplanted cells had carried a green label, the scientists could identify which cells had been provided — and all of the major components of the tissue-engineered intestine derived from the implanted cells. Critically, the new organs contained the most essential components of the originals.

"What is novel about this research is that this tissue-engineered intestine contains every important cell type needed for functional intestine. For children with intestinal failure, we are always looking for long-term, durable solutions that will not require the administration of toxic drugs to ensure engraftment. This tissue-engineered intestine, which has all of the critical components of the mature intestine, represents a truly exciting albeit preliminary step in the right direction," said Henri Ford, MD, Vice President and Surgeon-in-Chief at Children's Hospital Los Angeles.

"We demonstrated that we are providing all of the important cells—the muscle, nerve, epithelium, and some of the blood vessels," noted Frédéric Sala, PhD, lead author. "All of these are critical to proper functioning of the tissue, and now we know their origins." Next up are additional tissue-growing experiments—each one of which may bring that much closer the prospects of clinical testing and a solution for babies in need.

 

Tags:

Original Hyperlink: http://www.biosciencetechnology.com/News/2011/07/Researchers-engineer-functionin..

For more information from this magazine/website? Please click here http://www.biosciencetechnology.com

About Us:Bioscience Technology, published 12 times a year, provides 55,000 life science/biotechnology researchers with new product and new technology information on a monthly basis. Each issue contains new product information, tools and techniques articles, and specific product focused sections.

Note: The copyright and the ownship of the brand, product names, product numbers, and content mentioned belongs to their repective companies.

Latest News

‧2012-11-23
European semis make European industry competitive?

‧2012-11-13
Medical Devices Market in China Will Maintain 20 % AGR

‧2012-09-21
The European Market: What Can You Do For Your Country?

‧2012-05-14
U.S. Jobless Claims Fall for Second Week

‧2012-04-05
Thomas Reuters Annouced 2012 100 Top Hospital of America

Related Catalogs
Featured Pages
Contents
· Home
· Product News
· Catalogs
· Web TV
· News & Topics
· Features Articles
· Trade Show
· Sourcing Help
· My Allbiomedical
Special Zone
· Directory
· Trade Show Supplement
Allbiomedical.com
· About Us
· Promote Your Business
· Advertise
· Partner with Us
· Press Release
· Contact Us
· Term of Use
· Privacy Policy
· Starter Program
· Sitemap
B2B Web Portal Alliance
· Allitwares.com
· Allmetalworking.com
· Allbiomedical.com
· Allautowares.com
Buy Engineer Sample Kits
OEM Sourcing
Language
· Deutsch
· English
· Español
· Français
· Italiano
· Português
· Русский
· العربية
· 日本語
· 简体中文
· 繁體中文
· 한국의
· Türk
· Polski
 
   

Copyrights © 2012 Allitwares Corporation All Rights Reserved. www.allbiomedical.com is a Division of Allitwares Corporation
www.allbiomedical.com is a B2B Trade Portal | B2B Web Portal |B2B Marketplace for biomedical and pharmaceutical industry